
A Visual Environment for Reactive Robot
Programming of Macro-level Behaviors

Floris Erich, Masakazu Hirokawa, and Kenji Suzuki

University of Tsukuba
Artificial Intelligence Laboratory

1–1–1 Tennodai, Tsukuba, Ibaraki, 305–8577 Japan
erich@ai.iit.tsukuba.ac.jp, hirokawa m@ieee.org, kenji@ieee.org

Abstract. End-User Programming tools for robots typically allow end-
users to combine macrobehaviors to design the behavior of a robot. Ex-
perienced developers are required to write these macrobehaviors. We
present an approach for programming robots called Reactive Robot Pro-
gramming (RRP). RRP allows end-users to construct macrobehaviors
with minimal support from experienced developers by using uniform op-
erators and clear separation between sensing, processing and actuation.
The implemented approach consists of a Visual Programming Environ-
ment (VPE) and a robot architecture. In this paper we describe the VPE
and robot architecture as well as present results from a pilot user study.

Keywords: End-User Programming, Visual Programming Environment,
Reactive Robot Programming, Socially Assistive Robotics

1 Introduction

The field of Socially Assistive Robotics could benefit from using humanoid robots
in therapy sessions [1]. One robot which is used in Autism Spectrum Disorder
research is Aldebaran NAO [2]. Robot programming is concurrent and asyn-
chronous and is hence complex [3]. Various tools have been developed to make it
more accessible for developers to program robots, such as Choregraphe [4] and
Microsoft Robotics Studio [5].

Choregraphe allows developers to write applications for robots ranging from
the very simple to the very complex by combining macro-level behaviors (mac-
robehaviors) [4]. These macrobehaviors are typically part of a library. Tools like
Choregraphe offer functionality for expanding the default library, by for example
writing modules in a programming language and by constructing subgraphs. The
subgraph approach allows users to create macrobehaviors by combining existing
behaviors or by using the memory model of the robot for storing and retrieving
data. It requires the user to have a good grasp of the memory model of the
robot, and even then often requires knowledge of Python to create useful behav-
iors. The programming approach requires users to make a large step from using
a specialized tool to using a general purpose programming language.



2

We propose an approach for constructing macrobehaviors which is more pow-
erful yet more easy to use than subgraphs in Choregraphe. We call this approach
Reactive Robot Programming (RRP). In this approach the user models the mac-
robehavior by describing the sensors to use, performing data processing on these
sensors using operators and finally sending output to actuators. The macrobe-
haviors can either be run standalone on a robot, or be embedded in a robot
programming framework such as Targets-Drives-Means [6] or Choregraphe. In
this paper we describe a standalone implementation of this approach.

Unique about our approach is the usage of high level operators which can be
customized using (procedural) parameters. Procedural parameters allow the user
to separate between what an operator is supposed to do and how this should
be accomplished. For example, the map operator takes a function that maps
inputs to outputs as parameter. Procedures use only a subset of Python and are
automatically embedded in running programs. We introduced this approach to
programming robots in an earlier paper [7]. In this paper we introduce the Visual
Programming Environment that we created for programming robots using RRP.

The rest of this paper is structured as follows: In Section 2 we review ex-
isting solutions for end-user programming. In Section 3 we elaborate further on
our proposed solution by dividing it up into a technique, a tool and an archi-
tecture. In Section 4 we show a validation of our solution by means of a case
study, a comparative analysis through a user study and a subjective assessment
using NASA-TLX. In Section 5 we discuss limitations of our study and how to
overcome these. In Section 6 we conclude the paper.

2 Literature review

Creating robotic systems that operate autonomous in complex environments
has been a major goal of Artificial Intelligence research and has been previously
explored by Minsky in the form of the Society of Mind [8], Arkin in the form
of as Behavior-Based Robotics [9] and Brooks in the form of the subsumption
architecture [10]. Our work is inspired by these explorations and can be used
as part of systems that try to implement concepts from these works. The term
Reactive Robot Programming has a loose relationship with the term reactive
planning in the sense that Reactive Robot Programming is a technique that can
be used for performing reactive planning.

Existing flow based programming tools such as Choregraphe and Microsoft
Robotics Studio (MSRS) use embedded Visual Programming Languages in which
information flows between blocks using connectors. In Choregraphe the blocks
are called boxes, in MSRS they are called activities. Boxes in Choregraphe can
read data, do computations and output data. In MSRS there are specialized ac-
tivities to read data, do computations and output data. Due to this we consider
RRP to be more closely related to MSRS than Choregraphe1. Neither Chore-

1 Due to the inactivity of the Microsoft Robotics Studio project and the popular-
ity of Choregraphe in the SAR domain we however decided to compare RRP with
Choregraphe in our experiments.



3

graphe or MSRS support procedural parameters, which greatly increases the
expressive power of a visual programming tool.

Another category of programming tools aimed towards making it easier for
developers to create robot applications is component based systems, in which
components are wrapped in a visual language. Examples of this approach are
TiViPE [11] and RT-Middleware [12]. TiViPE aims to make it easy to add
modules or data structures and documentation to the programming environment.
The approach relies on the availability of the modules in some other language
such as Java or C++. RT-Middleware is a Object Management Group standard
for constructing middleware for robot technology. It uses CORBA and is hence
suitable for creating distributed robotic systems. An open source implementation
exists in the form of OpenRTM-aist. Just like for TiViPE, OpenRTM-aist aims
to wrap existing components for use in a visual programming environment (in
the case of OpenRTM-aist there are two tools for this purpose: RTSystemEditor
and RTC Builder). Just like TiViPE and RT-Middleware, the RRP-VPE relies
on the availability on some existing modules. The RRP-VPE currently does not
provide an easy way of wrapping these. It however does allow the creation of
intermediate nodes for data processing, whereas in TiViPE and RT-Middleware
every node requires a dedicated component. The ability to easily wrap new sensor
and actuator components would be a beneficial addition to the RRP-VPE.

Whereas flow based programming and component based systems both re-
quire the user to manually connect components, declarative systems for pro-
gramming robots try to infer the structure of a program based on a specification
declared by the developer. A recent example of such a system is Targets-Drives-
Means (TDM) [6]. TDM applications consist of a set of behaviors which a robot
can perform (such as walk towards an object or greet a person). For each be-
havior a schema is defined which detects an object in the environment (such as
a human or a toy). A set of score calculators (such as distance to an object)
determine which behaviors take presedence in the case that there are multiple
schemes active. TDM manages the state of a robotic system and its evolution.
Experiments have shown that TDM has a shorter learning curve than alter-
natives such as flowcharts [13] and that for end-users it is beneficial to use a
graphical interface for writing applications [6]. TDM has the same limitation as
component based systems such as TiViPE and RT-Middleware, namely that it
requires components to be written using a different tool before they can be used
in robot programming environment. In the case of TDM, RRP can be used to
write functions, conditions and score calculators.

3 Solution

3.1 Approach

Our basic hypothesis is that end-users can construct complex behaviors if they
separate sensing, processing and actuation and are given a visual environment
to develop behaviors in. RRP is a platform for developing behaviors according
to this. On a robot such as NAO the sensors and actuators are fixed and can



4

hence be supplied as a library. How the developer connects the sensors with the
actuators depends on the actual use case of the developer. Instead of trying to
predict exactly what the developer wants to accomplish, we offer a set of high
level operators which can be used to perform the data processing. The developer
can then use these operators for constructing an application. The developer
models applications from top to bottom, starting with the actuator streams,
which are connected using operators to intermediary streams, which are finally
connected using the subscribe operator to actuator streams.

Our solution currently supports the following operators:

– One to one operations
Subscribe Sends inputs to actuators. Except the subscribe operator, all

operators should be side effect free, hence subscribe is the only operator
which enables the robot to create output.

Timestamp Adds a timestamp to values from the input stream. This is
useful for combining data from various streams.

Sample (with rate parameter) Samples the input stream. At an interval
specified by rate, checks if there is a new value available and if so outputs
the value. This is useful to avoid doing unnecessary computations, such
as sending messages to an actuator at a higher rate than supported by
the actuator.

ForgetAfter (with interval parameter) Forgets values that are older than
the defined interval. Always directly outputs its input. After a time pe-
riod specified by interval has passed while no new value has been re-
ceived, outputs a sentinel value (for example the value None if the run-
time environment is Python). This is useful when combining messages
from multiple streams while avoiding using old data.

Filter (with predicate parameter) Filters values based on a predicate
procedure. If the predicate holds, the input is outputted, else it is ignored.
This is useful when we want to apply some condition to the messages or
for separating messages into different streams.

Map (with transformation parameter) Maps values based on a trans-
formation procedure. The procedure is applied to each input value and
the resulting value is outputted. This is useful for changing the format
of input messages into a desired output format, such as angles in degrees
to angles in radians or position data in one reference frame into another
reference frame.

– Many to one operations
Combine (with combinator parameter) Combines values from input streams

to a single output stream using a combinator procedure. The procedure
takes as input the latest value of the input streams and outputs some
combined value. This is useful when data is received by different sensors
and has to be combined, such as data from a laser range finder and from
the camera.

Merge Merges values from input streams to a single output stream. Always
outputs the latest input stream changed. This is for example useful when
multiple sensors are producing the same type of messages.



5

Fig. 1: A screenshot of the RRP-VPE. The top bar allows the user to add, delete
and load programs and to add, edit and remove helpers. When a program is
loaded the user can also add sensor streams using the top bar. The currently
loaded application has three sensor streams (drawn as blue rectanges) that rep-
resent blob detectors for the colors green, red and blue. Map operators transform
the inputs into an RGB intensity vector, putting the output in streams called
greenMapped, redMapped and blueMapped (drawn as green ovals). The values
are merged into a stream called colors. The subscribe operator takes the latest
color and submits this to the LedColor actuator stream.

In an earlier paper we describe an elaborate example of how these operators
are used in an actual application [7].

3.2 Visual Programming Environment

The Visual Programming Environment (VPE) is a web application which allows
users to collaboratively develop applications for a robot. The front-end is im-
plemented using the JavaScript framework JQuery, CSS framework Bootstrap,
diagram library JSPlumb and data binding library Knockout. The back-end is
implemented using the NodeJS runtime, the ExpressJS framework and the Neo4j
Graph Database. Communication between front-end and back-end is realized us-
ing the asynchronous communication library Socket.IO. A screenshot of the VPE
is included in Fig. 1.

A typical workflow of using the RRP-VPE is as follows: (1) Add a program,
(2) add sensors, (3) add operators to process sensor data, (4) subscribe actuators
to the processed data and finally (5) start the program from the VPE, which
creates an instance of a runtime architecture connected to the robot.

3.3 Robot architecture

The robot architecture consists of various tools to run and debug programs on a
robot. It was written in Python. There is a shell for running applications inter-
actively, and there is a launch script for starting applications directly from the



6

command line. There is a division between the data model, database adapters
and robot adapters, which allows the architecture to be used using different
storage media (such as the graph database or an XML file) and different robots
(currently only NAO is supported, in addition to some environments used for
debugging). The engine is multi-threaded. Events raised by the robot are asyn-
chronously send to the robot. Operators such as sample and forgetAfter maintain
a timer thread.

4 Validation

As a preliminary validation we performed a pilot study with students and fac-
ulty members. All subjects had some experience with software development for
robotics and/or Internet-of-Things appliances.

4.1 Comparative analysis

We performed a user study which compared developing macrobehaviors in the
RRP-VPE with Choregraphe. We implemented four programs in both tools. We
recruited four subjects to participate in the experiment: One master student,
two PhD students and one faculty member. The subjects had a background in
intelligent interaction technologies and were experienced in working with robots
and with programming in their daily research. The subjects were hand selected to
control for their level of experience with social robots. The subjects performed
three tasks using each tool: Explaining the behavior of a program, finding a
bug in a program and creating a program. For the explanation task we picked
different programs for the subject to explain. For the debugging task we used a
similar program in both tools, however the bug that we introduced was different
for each tool. For the creation task the subject had to create the same application
in both tools. We counter-balanced the experiment so that half of the subjects
started with RRP-VPE and then used Choregraphe, and the other half started
with Choregraphe and then used RRP-VPE. We also balanced the explanation
task.

The programs which we used were as follows:

Explanation task A1: Mirror ball color Once a second the robot looks for
balls of the color red, green or blue. If a ball with such a color is found then
the robot changes its eye color to match the color of the ball.

Explanation task A2: Say ball color Once a second the robot looks for balls
of the color red, green or blue. If a ball with such a color is found then the
robot says the color of the ball.

Debugging task B: Distance to brightness The robot looks for a red ball.
If found the robot calculates the distance to the ball. The robot changes the
brightness of its eye LEDs based on the distance to the ball (full brightness
if the ball is close, no brightness if the ball is far, a fraction if the ball is in
between)



7

Subject 1 Subject 2 Subject 3 Subject 4

Tool A Choregraphe RRP-VPE Choregraphe RRP-VPE
Tool B RRP-VPE Choregraphe RRP-VPE Choregraphe
Tool A explanation task A1 A1 A2 A2
Tool B explanation task A2 A2 A1 A1
Debugging task (both tools) B B B B
Creation task (both tools) C C C C

Fig. 2: Assignment of tools and tasks for each subject.

Tool Task S1 S2 S3 S4 Mean SD

Choregraphe A 00:52 02:19 02:22 02:20 01:58 41.7
RRP-VPE A 01:16 01:14 01:15 01:32 01:22 5.4
Choregraphe B 00:47 01:08 01:19 00:47 01:00 13.1
RRP-VPE B 00:44 01:04 02:55 00:38 01:20 57.6
Choregraphe C 10:00 10:00 10:00 10:00 10:00 0
RRP-VPE C 04:31 02:42 05:10 05:15 04:25 71.10

Fig. 3: Duration per task per tool (in minutes). Each task was capped at 10 min-
utes. If a subject was out of time we emphasized the result. Standard deviation
is in seconds.

Creation task C: Track close balls with arms, track far balls with head
The robot looks for a red ball. If found the robot calculates the distance to
the ball. If the ball is close then the robot tracks the ball with its left arm.
If the ball is far then the robot only tracks the ball with its head.

The dependent variables were the time taken for the task and task evaluation
based on NASA-TLX. Random variables were age, experience with various pro-
gramming constructs and gender. We tried to control for the variables of time
and location by performing the experiments approximately at the same time of
the day (around noon) and at the same location. Before starting each experiment
the participant signed an ethical consent form.

The total duration of each experiment was at most 1.5 hours. The distribution
of the tasks over the subjects can be found in Fig. 2. The duration per task per
tool can be found in Fig. 3. A graph showing the mean duration and standard
deviation can be found in Fig. 4.

4.2 Subjective assessment

We used Raw NASA-TLX for evaluating the total workload of using Choregraphe
and our solution. The results can be found in graphical format in Fig. 5.

5 Discussion

The performed experiment shows that RRP-VPE outperforms Choregraphe for
the creation task. Even though we only had a few participants this finding re-



8

Fig. 4: Mean duration and standard deviation for each task and both tools

mains significant. For this experiment we recruited participants which have some
experience with programming robots. A more realistic study would include par-
ticipants which have little programming experience. Ideally we would perform
this experiment with the actual target user of our research, namely therapists.

We suggest that applications modelled using the VPE are more simple than
similar applications modelled using Choregraphe for three reasons. First, the
responsibility for each kind of element is defined in RRP. Sensor streams read
data and do not change the behavior of the robot. Ordinary streams are simple
containers for data. Actuator streams change the behavior of the robot. Because
of this separation we can make some assumptions such as that sensor boxes
should be started automatically. In Choregraphe a box can have many respon-
sibilities which also complicates the logic for starting and stopping a box. The
second reason is that RRP has a graphical notation which tries to show all data.
For example, parameters to operators are visible without having to use drilldown
forms. Lambda functions are embedded into the graph, though the body of more
complicated functions can be hidden by using a helper. Third, by using operators
with procedural parameters we require the user to have less programming skill
to be able to accomplish tasks. For example, to include simple Python expres-
sions in Choregraphe the user needs to be familiar with writing functions and
classes. For RRP-VPE the developer only needs to know how to write (multi-
line) Python expressions such as variable declaration/assignment and function
calls.

Whereas our tool was shown beneficial for the creation task, the same was not
true for the explanation and debugging task. The tasks were most likely too easy
to complete and hence did not require the user to use any specific features offered
by the platforms. For example, we allowed the user to assume the implementation
of the boxes in Choregraphe as well as the helpers in RRP-VPE were correct.
For the explanation task, if we would use non descriptive name for the boxes the
participant would not be able to explain the behavior diagram so easily (having
to look inside each box). For the debugging task, introducing a bug within a box
or helper would make it significantly harder for the user to perform this task.
At the same time we would greatly increase the chance of the user not being
able to properly explain a behavior diagram or not able to find a bug within the
allocated time.



9

6 Conclusion

In this paper we introduced the Reactive Robot Programming approach with an
accompanying Visual Programming Environment. Through a pilot user study we
showed that this solution outperforms Choregraphe for creating new macrobe-
haviors. Users are faster when creating macrobehaviors using RRP-VPE and feel
a lower task load. In the future we want to repeat the experiment with end-users
instead of experienced robot programmers.

References

1. Feil-Seifer, D. and Mataric, M.J., “Defining Socially Assistive Robotics”, IEEE In-
ternational Conference on Rehabilitation Robotics, June 28–July 1, 2005, Chicago,
IL, USA, pp. 465–468.

2. Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafourcade, P.,
Marnier, B., Serre, J. and Maisonnier, B., “Mechatronic design of NAO humanoid”,
IEEE International Conference on Robotics and Automation, Kobe, Japan, May 12–
17, 2009.

3. Kortenkamp, D., Simmons, R. and Brugali, D., “Robotic Systems Architectures
and Programming”, in: Siciliano, B. and Khatib, O. (Eds.), “Springer Handbook of
Robotics”, Springer-Verlag, Berlin, Germany, 2016.

4. Pot, E., Monceaux, J., Gelin, R. and Maisonnier, B., “Choregraphe: a Graphical
Tool for Humanoid Robot Programming”, IEEE International Symposium on Robot
and Human Interactive Communication, Toyama, Japan, September 27–October 2,
2009.

5. Morgan, S. “Programming Microsoft Robotics Studio”, Microsoft Press, Redmond,
USA, 2008.

6. Berenz, V. and Suzuki, K., “Targets-Drives-Means: A declarative approach to dy-
namic behavior specification with higher usability”, Robotics and Autonomous Sys-
tems, Volume 62, Issue 4, pp. 545–555, 2014.

7. Erich, F. and Suzuki, K., “Cognitive Robot Programming using Procedural Param-
eters and Complex Event Processing”, IEEE International Conference on Simulation,
Modeling, and Programming for Autonomous Robots, San Francisco, December 13–
16, 2016.

8. Minsky, M., “The society of mind”, Simon & Schuster, New York, USA, 1986.
9. Arkin, R.C., “Behavior-Based Robotics”, MIT Press, Massachusetts, USA, 1998.
10. Brooks, R.A., “Intelligence without representation”, Artificial Intelligence, Volume

47, pp. 139–159, 1991.
11. Lourens, T., “TiViPE — Tino’s Visual Programming Environment”, Annual Inter-

national Computer Software and Applications Conference, Hong Kong, China, 28–30
September, 2014.

12. Ando, N., Suehiro, T. Kitagaki, K. and Kotoku, T., “RT-Middleware: Distributed
Component Middleware for RT (Robot Technology)”, IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, Edmonton, Canada, August 2–6, 2005.

13. Berenz, V. and Suzuki, K., “Usability Benchmarks of the Targets-Drives-Means
Robotic Architecture”, IEEE-RAS International Conference on Humanoid Robots,
Osaka, Japan, November 29–December 1, 2012.



10

Fig. 5: Mean and standard deviation of NASA TLX evaluation for each task.


